On PT-symmetric extensions of the Calogero and Sutherland models

نویسنده

  • Yves Brihaye
چکیده

The original Calogero and Sutherland models describe N quantum particles on the line interacting pairwise through an inverse square and an inverse sinussquare potential. They are well known to be integrable and solvable. Here we extend the Calogero and Sutherland Hamiltonians by means of new interactions which are PT-symmetric but not self adjoint. Some of these new interactions lead to integrable PT-symmetric Hamiltonians; the algebraic properties further reveal that they are solvable as well. We also consider PT-symmetric interactions which lead to a new quasi-exactly solvable deformation of the Calogero and Sutherland Hamiltonians. [email protected] [email protected]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A note on the integrability of non-Hermitian extensions of Calogero-Moser-Sutherland models

We consider non-Hermitian but PT-symmetric extensions of Calogero models, which have been proposed by Basu-Mallick and Kundu for two types of Lie algebras. We address the question of whether these extensions are meaningful for all remaining Lie algebras (Coxeter groups) and if in addition one may extend the models beyond the rational case to trigonometric, hyperbolic and elliptic models. We fin...

متن کامل

On PT-symmetric extensions of the Calogero model

The original Calogero model describes N quantum particles on the line interacting pairwise through a inverse square potential. It is well known to be integrable and solvable. Here we extend the Calogero Hamiltonian by means of new interactions which are PT-symmetric but not self adjoint. Some of these new interactions lead to integrable PT-symmetric Hamiltonians; the algebraic properties furthe...

متن کامل

Yangian Gelfand-Zetlin Bases, glN-Jack Polynomials and computation of Dynamical Correlation Functions in the Spin Calogero-Sutherland Model

We consider the glN -invariant Calogero-Sutherland Models with N = 1, 2, 3, . . . in a unified framework, which is the framework of Symmetric Polynomials. By the framework we mean an isomorphism between the space of states of the glN -invariant Calogero-Sutherland Model and the space of Symmetric Laurent Polynomials. In this framework it becomes apparent that all the glN -invariant Calogero-Sut...

متن کامل

Exact Solvability of the Calogero and Sutherland Models

Translationally invariant symmetric polynomials as coordinates for N -body problems with identical particles are proposed. It is shown that in those coordinates the Calogero and Sutherland N body Hamiltonians, after appropriate gauge transformations, can be presented as a quadratic polynomial in the generators of the algebra slN in finite-dimensional degenerate representation. The exact solvabi...

متن کامل

PT - symmetric deformations of Calogero models

We demonstrate that Coxeter groups allow for complex PT -symmetric deformations across the boundaries of all Weyl chambers. We compute the explicit deformations for the A2 and G2-Coxeter group and apply these constructions to Calogero-MoserSutherland models invariant under the extended Coxeter groups. The eigenspecta for the deformed models are real and contain the spectra of the undeformed cas...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008